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ions, for example:  serine, 1.26 and 1.27 /~ (Shoe- 
maker,  Barieau, Donohue & Lu, 1953); hydroxy-  
proline, 1.25 and 1.27/~ (Donohue & Trueblood, 1952) ; 
threonine, 1.24 and 1.25 A (Shoemaker et al., 1950); 
histidine, 1.25 and 1.27 J~ (Donohue, Lavine & Rollett,  
1956). 

The simple valence-bond theory thus  accounts 
satisfactorily for the  observed carbon-oxygen dis- 
tances, but  not for the n i t rogen-oxygen distances. 
The lat ter  discrepancies m a y  possibly be connected 
with the fact tha t  for both the ni t ra te  ion and the nitro 
group the contr ibut ing resonance forms have opposite 
formal  changes on the nitrogen and oxygen atoms. 
This si tuat ion might  be expected to shorten the dis- 
tances from those predicted, as is observed. Precise 
determinat ion of the 1~-0 bond length in an amine 
oxide, such as (CHa)aN+-O - would be of interest on 
this point. 

These studies were supported by the Office of Ord- 
nance Research, U.S. Army.  We wish to thank  Dr 
Richard  Marsh for interesting and helpful discussions. 
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A Direct Vector Method for Obtaining Symmetry-Independent  Solutions to Crys- 
tallographic Problems Applied to Reflections and Single Rotations in Crystals 
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By using vector methods within the sixfold system of coordinates that comprise both the direct- 
and the reciprocal-lattice vectors, the symmetry-independent crystallographic solutions to vector 
equations are obtained directly. The technique is applied to the study of arbitrary reflections and 
single rotations in crystals. Tha symmetry-independent solution to the reflection problem is iden- 
tical to a recently published solution obtained less directly by the matrix method. The symmetry- 
independent solution to the rotation problem has not heretofore been given. 

Introduct ion  

The t rea tment  of problems in geometrical crystallo- 
graphy by  t radi t ional  vector methods frequently in- 
volves complicated algebraic manipulat ions which 
result from the non-orthogonali ty of the coordinate 
axes. The solution of some of the problems is simplified 

by the mat r ix  method. In  this method the crystallo- 
graphic problem is referred to a Cartesian coordinate 
system by means of a mat r ix  transformation.  The 
problem is then solved in the Cartesian system and 
the solution is f inal ly referred back to the crystallo- 
graphic coordinates by a second matr ix  transforma- 
tion. The mechanics of solution b y  either of these 
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methods is complicated and is liable to manipulative 
and conceptual errors. 

This paper describes a direct vector method that  
reduces to a minimum the possibility of error, since 
the symmetry-independent crystallographic solutions 
to vector equations are obtained directly. By consider- 
ing both the direct- and the reciprocal-lattice vector 
systems from a common origin, solutions to vector 
equations are obtained in terms of the components 
of the vectors upon all six coordinate axes in a form 
that  does not depend upon the symmetry of the crystal. 
We are concerned in this report only with the method 
of deriving such symmetry-independent solutions. In 
order to obtain an explicit solution to the vector 
equation for a particular crystal from the symmetry- 
independent solution it is necessary to know the six 
components of each vector, while in general only three 
components of each vector are given. Transformation 
equations for evaluating the undetermined components 
of the vectors are presented and the method for ob- 
taining explicit solutions is outlined. 

In order to demonstrate the elegance of the direct 
vector method the transformation equations that  
relate to arbitrary reflections and single rotations in 
crystals are developed in a form that does not depend 
upon the symmetry of the crystal. The problems to be 
considered involve the determination of the crystallo- 
graphic components of a vector R 2 which is related 
to an initial vector R 1 either through reflection across 
an arbitrary plane (hokolo) in any crystal, as in Fig. 
1 (a); or by means of a rotation about an arbitrary 
axis R 0 by some angle ~ in any crystal, as in Fig. 1 (b). 

A vector treatment of these problems has been given 
by Decker (1944), and more recently Andrews & 
Johnson (1955) have obtained the symmetry-inde- 
pendent solution to the reflection problem by the 
matrix method. The direct vector method is markedly 
different frem the vector method used by Decker. 
Since in Decker's treatment the reciprocal lattice lies 
in reciprocal space, which is a transformation of real 
space, corresponding vectors in the two lattices are 
reciprocally related. The direct vector method, in 
contrast, operates within a single space and the direct 

R0 K, 

i s "~ ~ I 

"~Rz / ~  " " (4ko/o ~ 
(a) (b) 

Fig. 1. (a) Ref lect ion:  The problem is to determine the  com- 
ponents  of the vector  R 2 which is related to an initial  vector  
R z by  reflection across some plane (hokolo) in any  crystal .  
(b) Ro t a t i on :  The problem is to de termine  the  components  
of the vector  R 2 which is re la ted to an  initial vector  R~ 
by  the  ro ta t ion  of R 1 abou t  some axis R 0 th rough  an ar- 
b i t r a ry  angle ~ in a n y  crystal• 

and reciprocal lattices are considered as two coor- 
dinate systems, or as a combined coordinate system, 
in the same space. Since vectors and vector equations 
are independent of coordinate systems, corresponding 
vectors in the direct and reciprocal lattices are iden- 
tical. The consideration of the relationship between 
the direct and the reciprocal lattice as one that  in- 
volves a transformation of space or as one that  in- 
volves simply a transformation of coordinates thus 
distinguishes the two vector methods. 

Development of the direct vector method 
Vector equations that  pertain to certain geometrical 
problems involve the products of vectors in addition 
to their sums and differences. Our problem is to find 
the crystallographic solutions to such equations. We 
begin by considering a general system of crystallo- 
graphic coordinates that  comprises the direct- and 
the reciprocal-lattice vectors, and derive general ex- 
pressions for vectors and for vector products in terms 
of the components of the vectors. These expressions 
are inserted into the vector equations, which then 
become linear functions of the basic lattice vectors. 
Advantage is taken of the fact that  the sum of the 
components of all the vectors in a vector equation 
resolved in any direction equals zero. By resolving the 
vector equation along each of the coordinate axes, 
expressions are obtained that  involve only the crystal- 
]ographic components of the vectors and certain 
numerical factors. The component equations, so ob- 
tained, constitute the symmetry independent crystallo- 
graphic solution to the vector equation. 

We let all the basic lattice vectors a, b, c, and 
a*, b*, c* have a common origin and serve as coor- 
dinate axes in space. Since vectors and vector equa- 
tions are independent of coordinate systems, it follows 
that  any vector Rq in any crystal can be expressed 
variously as 

Rq = Uqa + vqb + WqC = Oiqia i (l)t 
-- hqa*+lcqb*+lqc*  * * _ ~ OCqia i • 

Since a, • a~ = ~ii, the dot product of two vectors is 

• * 
R p  R q  = O~piO~qi = O~iOCqi , (2) 

R q -  Rq -- ]Rql 2 = OCqiOCq~i . (3) 

a, b,  c and  a*, b*, c* are the  basic la t t ice vectors in the  
direct  and  the reciprocal la t t ice respect ively;  the  parameters  
[UqVqWq] are the components  of the  vector  Rq in the direct  
lat t ice which specify its crystal lographic direct ion;  the  para- 
meters  (hqkqlq) are the components  of Rq in the  reciprocal 
la t t ice and  are proport ional  to the  Miller indices of the  planes 
in the  direct  lat t ice t h a t  are perpendicular  to Rq. For  con- 
venience these components  and  vectors are expressed in the  
no ta t ion  O~qiai, where the convent ion is used t h a t  a repeated 
d u m m y  index occurring in a p roduc t  implies the  s u m m a t i o n  
over the  index, i.e.: 

~q/ai = ~qza 1-}- ~q2a 2 + (xq3a 3 ---- uqa + vqb + w q c .  
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* * first with If we take the dot product of aq~ai = aqia~, 
a1 then with a*, we see that  the components of the 
vectors are related by 

~ * = a ~  ~ a i  %. a * .  * * • ; = %~ai . (4) 

Since the basic lattice vectors at and a~' do not have 
integral values, equation (4) shows that  only one of 
the two sets of components ~qt and C~q~ of any vector 
Rq can have integral values. The components aqi are 
proportional to the zonal parameters when Rq is 
parallel to a crystal zone and the components o~ are 
proportional to the Miller indices when Rq is normal 
to a crystal face. We consider also the cross product 

R~ = R v × R  q = (~*~a*) × (~*a*) .  (5) 
Since 

at = A (a? × a* ) ,  

where A = a ~ . a z x a  a and i, j ,  and k maintain the 
cyclical order of 1, 2, and 3, it follows tha t  

1 a~ a*~ o~'1[ 1 
R~ = ~ a2 ~'~ a*~l = ~ det (a~c~p*.c%*) (6) 

= A det (a*c~¢aqi) . 

T h e  p r o b l e m  o f  r e f l e c t i o n  

Let R 0 (Fig. 1 (a)) be a vector normal to the reflection 
plane (hoko/o), R1 be any initial vector, and R~ its 
reflection across (hokolo). Decker (1944) has shown that  
for such reflections 

R2 = R ~ - 2 ( R ~  • R 0 ) R o / ( R  0 • R 0 ) .  (7) 

Using relations (1), (2) and (3), we can immediately 
write 

• , c~2~a~ = ~x#~-2(cqic%~)c%afl(c%~), (8a) 

• * ~ * ~ a * - 2  * * * * ~21a~ = (O¢lt~co/)Oc0]a ~ / ( o ¢ 0 / ~ o / )  . ( 8 b )  

Since the sum of the components of all the vectors 
in a vector equation resolved in any direction must  
equal zero, equations (8) yield directly the components 
of R2 upon each coordinate axis in terms of the compo- 
nents of the vectors R~ and R 0. Thus the components 
of the vector R z along the coordinate axes are given 
directly by 

c~2~ = a~-2Ac%. ,  (9a) 

0~2" ~ ~ * * ~l~-2Ac%~, (9b) 
where 

A = 

The component equations (9), with j taking on the 
values of 1, 2, and 3, constitute the symmetry- 
independent solution to the reflection problem. Ex- 
pressed in terms of components from equation (1), 
equations (9) can be written as 

u 2 = U l - 2 A u o ,  ] h2 = h ~ - 2 A h o ,  | 
v 2 = v ~ - 2 A  v o , j (10a) k 2 = k ~ - 2 A k  o , j (10b)~ 
w2 = w ~ - 2 A w o  , /2 = l ~ - 2 A  to, 

where 
A = h°ul + kcvl + f°wl 

houo + kovo + lowo 
= lhUo + kxvo +/lWo 

houo + kovc + lowo • 

Equations (10) are the identical equations tha t  were 
obtained much less directly by Andrews & Johnson 
(1955), using matrix methods. Equations (10) are the 
symmetry-independent form of the transformation 
equation for the reflection across the plane (hoko/o) of 
(a) the directions [uxvlwl] and (b) the planes (hlkxll) 
into (a) the directions [u~v~w~] and (b) the planes 
(h~kJ~). The parameters uovow o and hokol o are the 
components of the reference vector R o in the direct 
and the reciprocal lattice respectively. Equation (4) 
expresses the relationship between these components. 

T h e  p r o b l e m  o f  s i n g l e  r o t a t i o n  

The problem, in a crystal with fixed coordinates, is 
to determine the crystallographic direction of a vector 
R 2 (Fig. 1 (b)) which is related to an initial vector R 1 
by a counterclockwise rotation of R 1 about an arbi- 
t ra ry  axis R 0 through some angle ~. An equivalent 
statement of the problem is the following: Let a 
fixed direction in space be established such that  it lies 
parallel to a known direction R 1 in a crystal. Let  the 
crystal be rotated clockwise about an arbi t rary axis 
R 0 through some angle ~. The fixed direction now lies 
parallel to the crystallographic direction R 2 which is 
to be determined. Decker (1944) has shown tha t  for 
such rotations 

R 2 -- R 1 cos 9 + R  1 • Ro(1-cos  ~)Ro/R o • R o 

+s in  9(Ro×Rx)/IRol.  (11) 

From relations (1), (2), (3), and (6) we can express 
(11) directly as 

~2iat = ~uat  cos q +  ( ~ l , ~ * ) ( 1 - c o s  ~v)~ad(~0,~*)  
+sin ~0 det (aio~*o~*)/Al/(~o~c~*) (12) 

and 

= c o s  ( ln *)(t-cos 

+A sin ~0det (a*c~u)/l /(c%~c~*).  (13) 

Thus the symmetry-independent solution to the single- 
rotation problem is 

~.~t = ~u cos 9 + A  (1-cos  9 ) ~  
+sin * * * * ~(~xojo~-~xljO~ok)/AB (14) 

and 

a*  = c~* cos ~0+A(1-cos ~0)c~* 

+ A  sin ~(~xoio~-aljO~o~)/B , (15) 

¢ Equations (10b) and (15) are based upon the assumption 
that planes transform in the same way as their vector normals. 
While this assumption is not always valid, it holds for the 
special cases here considered. 
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where i, j ,  and/c maintain the cyclical order of 1, 2, 
and 3 ; 

A :  * * ~C~o~/~0~o~ and B~=o~o~a*=houo+kovo+lowo • 

Transposing directly to parameter form by means 
of equation (1), equations (14) and (15) become 

u~ - u 1 cos ~ + A  (1-cos  ~)u0+sin ~(kol l -kl lo) /AB 

h~ = h 1 cos ~0+A (1-cos  qD)ho+A sin ~(voWl-VlWo)/B. 

• (16)  

Equation (14) yields the directions [a~l~2ec%3] and 
(a21c~22~23) tha t  initial directions (15) the planes * * * 

[an~l~als] and initial planes k~ll[~* (%*12a*~13j will occupy 
after being rotated counterclockwise about the axis 
R o = aoiai = a'a}* through an angle ~ in a crystal 
with fixed coordinates. 

Consider a rotation of 180 ° about the axis R 0. 
For ~0 = 2~ equations (14) and (15) yield 

~2~" = ~ l i -2Aao i ,  (17a) 

~ -- a~-2Ac~oj.  (lZb) 

Comparing (17) and (9) we deduce the well known 
result tha t  the combined operation of a two-fold 
rotation about R 0 followed (or preceded} by reflection 
across the plane normal to R 0 transforms all initial 
directions and planes into the inverse directions and 
planes. 

D i s c u s s i o n  

The technique of applying the above equations to a 
particular crystal has been described previously 
(Davisson, 1957) and will only be outlined here. 
Since the equations contain the components of the 
vectors Rq upon the six coordinate axes ai and a* 
while we only know three of the components of each 
vector, either [%laq2%s] or (%1%2aqa) as the case may 
be, ' i t  is necessary to solve equation (4) to obtain the 
remaining components. The transformation equations 
are then solved by substitution of the components 
and the evaluation of A in the appropriate symmetry  
system. I t  is important  to note from equations (1) 
and (2) that  the components obtained from (4) usually 

cannot be reduced or factored before being applied to 
the solutions obtained by the direct vector method, 
but it can be shown tha t  such factoring does not alter 
the reflection equations. 

Since rotations and reflections are the elements of 
macroscopic symmetry,  the above relationships may 
be of general interest to crystallographers. Their ap- 
plication to the s tudy of X-ray diffraction patterns 
formed from twinned crystals is well known. Equations 
(9) and (17) apply to the s tudy of reflectional and two- 
fold twinning respectively. The rotation equations are 
generally useful in problems of crystal orientation. 
Thus, without using their full potentialities, they can 
be used to determine the directions of surface features 
such as slip lines, edges of dislocation pits, and surface 
breakdown paths observed on crystal faces. The more 
general transformation equations developed previously 
(Davisson, 1957) are useful for determining the direc- 
tions of volume paths in crystals. 

The direct vector method can be used generally to 
obtain symmetry-independent solutions to crystallo- 
graphic problems. With a little practice such solutions 
can be written down directly from an inspection of the 
vector equation. I t  is suggested tha t  this method is 
more direct and simple than the methods of geometri- 
cal analysis presently used, which yield the symmetry  
independent solution only after a considerable amount 
of calculation. Certain advantages are gained when the 
geometry of crystals is described by the direct vector 
method: (1) Each problem is reduced to a single 
symmetry-independent solution in which all quantities 
are known except for certain components of the vec- 
tors. (2) Symmetry  considerations are involved only 
in the evaluation of the components by means of 
equation (4), to which a single form of work sheet 
can be applied. I t  follows tha t  the work of solving 
problems in the various symmetry  systems becomes 
systematized and thereby simplified. 

The writer wishes to thank Paul L. Smith and Wil- 
liam H. Vaughan for their stimulating interest in this 
work. 
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